Disc Separation of the Schur Complement of Diagonally Dominant Matrices and Determinantal Bounds

نویسندگان

  • Jianzhou Liu
  • Fuzhen Zhang
چکیده

We consider the Geršgorin disc separation from the origin for (doubly) diagonally dominant matrices and their Schur complements, showing that the separation of the Schur complement of a (doubly) diagonally dominant matrix is greater than that of the original grand matrix. As application we discuss the localization of eigenvalues and present some upper and lower bounds for the determinant of diagonally dominant matrices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Improvement on Disc Separation of the Schur Complement and Bounds for Determinants of Diagonally Dominant Matrices

In this paper, we improve the disc separation of the Schur complement of strictly diagonally dominant matrices presented in Liu [SIAM. J. Matrix Anal. Appl., 27 (2005): 665-674]. As applications, we present some new bounds for determinants of original matrices and estimations for eigenvalues of Schur complement. By theoretical analysis, we improve the bounds of determinants established in Huang...

متن کامل

The disc separation and the eigenvalue distribution of the Schur complement of nonstrictly diagonally dominant matrices

The result on the Geršgorin disc separation from the origin for strictly diagonally dominant matrices and their Schur complements in (Liu and Zhang in SIAM J. Matrix Anal. Appl. 27(3):665-674, 2005) is extended to nonstrictly diagonally dominant matrices and their Schur complements, showing that under some conditions the separation of the Schur complement of a nonstrictly diagonally dominant ma...

متن کامل

The Schur complements of generalized doubly diagonally dominant matrices

As is known, the Schur complements of diagonally dominant matrices are diagonally dominant; the same is true of doubly diagonally dominant matrices. The purpose of this paper is to extend the results to the generalized doubly diagonally dominant matrices (a proper subset of H -matrices); that is, we show that the Schur complement of a generalized doubly diagonally dominant matrix is a generaliz...

متن کامل

Ela Schur Complements of Generally Diagonally Dominant Matrices and a Criterion for Irreducibility of Matrices∗

As is well known, the Schur complements of strictly or irreducibly diagonally dominant matrices are H−matrices; however, the same is not true of generally diagonally dominant matrices. This paper proposes some conditions on the generally diagonally dominant matrix A and the subset α ⊂ {1, 2, . . . , n} so that the Schur complement matrix A/α is an H−matrix. These conditions are then applied to ...

متن کامل

More results on Schur complements in Euclidean Jordan algebras

In a recent article [8], Gowda and Sznajder studied the concept of Schur complement in Euclidean Jordan algebras and described Schur determinantal and Haynsworth inertia formulas. In this article, we establish some more results on the Schur complement. Specifically, we prove, in the setting of Euclidean Jordan algebras, an analogue of the Crabtree-Haynsworth quotient formula and show that any S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2005